Assessment of intracranial dynamics in hydrocephalus: effects of viscoelasticity on the outcome of infusion tests.
نویسندگان
چکیده
OBJECT The treatment of hydrocephalus requires insight into the intracranial dynamics in the patient. Resistance to CSF outflow (R0) is a clinically obtainable parameter of intracranial fluid dynamics that quantifies the apparent resistance to CSF absorption. It is used as a criterion for the selection of shunt candidates and serves as an indicator of shunt performance. The R0 is obtained clinically by performing 1 of 3 infusion tests: constant flow, constant pressure, or bolus infusion. Among these, the bolus infusion method has the shortest examination times and provides the shortest time of exposure of patients to artificially increased intracranial pressure (ICP) levels. However, for unknown reasons, the bolus infusion method systematically underestimates the R0. Here, the authors have tested and verified the hypothesis that this underestimation is due to lack of accounting for viscoelasticity of the craniospinal space in the calculation of the R0. METHODS The authors developed a phantom model of the human craniospinal space in order to reproduce in vivo pressure-volume (PV) relationships during infusion testing. The phantom model followed the Marmarou exponential PV equation and also included a viscoelastic response to volume changes. Parameters of intracranial fluid dynamics, such as the R0, could be controlled and set independently. In addition to the phantom model, the authors designed a computational framework for virtual infusion testing in which viscoelasticity can be turned on or off in a controlled manner. Constant flow, constant pressure, and bolus infusion tests were performed on the phantom model, as well as on the virtual computational platform, using standard clinical protocols. Values for the R0 were derived from each infusion test by using both a standard method based on the Marmarou PV equation and a novel method based on a system identification approach that takes into account viscoelastic behavior. RESULTS Experiments with the phantom model confirmed clinical observations that both the constant flow and constant pressure infusion tests, but not the bolus infusion test, yield correct R0 values when they are determined with the standard method according to Marmarou. Equivalent results were obtained using the computational framework. When the novel system identification approach was used to determine the R0, all of the 3 infusion tests yielded correct values for the R0. CONCLUSIONS" The authors' investigations demonstrate that intracranial dynamics have a substantial viscoelastic component. When this viscoelastic component is taken into account in calculations, the R0, is no longer underestimated in the bolus infusion test.
منابع مشابه
Spectral analysis of intracranial pressure signals recorded during infusion studies in patients with hydrocephalus.
Hydrocephalus includes a number of disorders characterised by clinical symptoms, enlarged ventricles (observable using neuroimaging techniques) and altered cerebrospinal fluid (CSF) dynamics. Infusion tests are one of the available procedures to study CSF circulation in patients with clinical and radiological features of hydrocephalus. In them, intracranial pressure (ICP) is deliberately raised...
متن کاملIntracranial Pial Arteriovenous Fistula Mimicking a Vein of Galen Aneurysm with Hydrocephalus Managed with Endovascular Method: Case Report
Background and Importance: Intracranial pial arteriovenous fistula is a recently described matter as a rare vascular malformation occurring in children. It is usually located in the subpial space in the intracranial cavity with a high-flow shunt. Case Presentation: Authors report on a 2-year-old child with intracranial pial arteriovenous fistula and progressive enlargement of he...
متن کاملNormal pressure hydrocephalus: Diagnostic and predictive evaluationon
In typical cases, normal pressure hydrocephalus (NPH) manifests itself with the triad of gait disturbance, which begins first, followed by mental deterioration and urinary incontinence associated with ventriculomegaly (on CT or MRI) and normal cerebrospinal fluid (CSF) pressure. These cases present minor diagnostic difficulties and are the most likely to improve after shunting. Problems arise w...
متن کاملCharacterisation of the complexity of intracranial pressure signals measured from idiopathic and secondary normal pressure hydrocephalus patients.
Hydrocephalus is a condition characterised by enlarged cerebral ventricles, which in turn affects intracranial pressure (ICP); however, the mechanisms regulating ICP are not fully understood. A nonlinear signal processing approach was applied to ICP signals measured during infusion studies from patients with two forms of hydrocephalus, in a bid to compare the differences. This is the first stud...
متن کاملThermo-mechanical analysis of diesel engines cylinder heads using a two-layer viscoelasticity model with considering viscosity effects
Loading conditions and complex geometry have led the cylinder heads to become the most challenging parts of diesel engines. One of the most important durability problems in diesel engines is due to the cracks valves bridge area. The purpose of this study is a thermo-mechanical analysis of cylinder heads of diesel engines using a two-layer viscoelasticity model. The results of the thermo-mechani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurosurgery
دوره 119 6 شماره
صفحات -
تاریخ انتشار 2013